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Abstract : In this paper we present necessary and sufficient conditions for the representability of a coherent risk measure ρ on 
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0. Introduction 

The notion of measure is a very important concept in mathematics, particularly for the theory of integrals. These measures are 

based on the property of additivity. This property has been abandoned in many areas such as in decision theory and in the theory of 

cooperative games. It becomes essential to define nonadditive measures, which are usually called capacities [2] or fuzzy measures 

[13]. A fundamental concept that uses these nonadditive measures is the Choquet integral [2], defined as an integral with respect to 

a capacity. The Choquet integral is known as a nonadditive integral of a function with respect to a capacity (or nonadditive measure, 

or fuzzy measure). It was characterized mathematically by Schmeidler [11], and then by Murofushi and Sugeno [10] using the 

concept of the capacity introduced by Choquet. Later it was used in utility theory [12], leading to the so-called Choquet Expected 

Utility. 

So far, many studies have focused on the theory and the applications of the Choquet integral defined on a discrete set (Faigle 

and Grabisch [6], Grabisch and Labreuche [7]). In the discrete case, the Choquet integral of a function with respect to a capacity is 

easy to calculate. However, this is not the case for the Choquet integrals of functions on a continuous support. Recent developments 

that have been conducted on the Choquet integral of real functions [14, 15] appear to open up new horizons. 

In this paper our purpose is to present necessary and sufficient conditions for the representability of a coherent risk measure. 

The main objective is to study coherent risk measures which satisfy additionally the axioms of dilatation monotone and comonotonic 

additivity. 

1. Notations  

We work with a probability space   = (, F, P). Denote by M = M() the set of probability measures on (, F) which are 

absolutely continuous w.r.t. P. We endow with the topology inherited from L1 via the inclusion 
dQ

Q
dP

 , Q ∈ M. Denote by σ(X) 

for X ∈ L0 the σ-algebra generated by the sets {X > c} for all c ∈ R and all the sets of null probability.  

2. Coherent Risk Measures  
The important notion of a coherent risk measure was introduced by Artzner et al. (1999) [1].  

Definition 1. A functional ρ : L∞ → R is called a coherent risk measure if it satisfies the following properties:  

1. Translation Invariance: ρ(a + X) = ρ(X) − a for all X ∈ L∞ and a ∈ R.  

2. Positive Homogeneity: ρ(aX) = aρ(X) for all X ∈ L∞ and a ≥ 0.  

3. Monotonicity: For X ∈ L∞ with X ≥ 0 almost surely, ρ(X) ≤ 0 holds.  

4. Sub-Additivity: ρ(X + Y) ≤ ρ(X) + ρ(Y) for all X, Y ∈ L∞.  

Coherent risk measures can be characterized as follows, see [4]:  

Theorem 2. Let ρ be a coherent risk measure. The following properties are equivalent:  

 1. There exists a non-empty closed convex set Qρ ⊆ M such that for all X ∈ L∞,  

( ) inf [ ].
Q Q

X EQ X





    (1.1)  

 2. Aρ : {X ∈ L∞|ρ(X) ≤ 0} is closed in the weak∗ topology σ(L∞, L1).  

 3. ρ satisfies the Fatou property: For any sequence (Xn)n≥1 of random variables, uniformly bounded and converging in probability 

to X, ( ) liminf ( )n
n

X X 


  holds.  

4. For any sequence (Xn)n≥1 of random variables, uniformly bounded and decreasing to X, ( ) lim ( )n
n

X X 


  holds.  

For a non-empty closed convex set Q ⊆ M, the infimum in (1) can be replaced by a minimum iff one of the following conditions 

holds  

5. Qρ is weakly compact in L1.  

6. If (An)n≥1 is a decreasing sequence of sets An ∈ F such that  1n nA   , then lim sup [1 ] 0
n

P

Q A
n Q Q

E
 

 .  

7. If (An)n≥1 is an increasing sequence of sets An ∈ F such that  1n nA   , then lim sup [1 ] 1
n

P

Q A
n Q Q

E
 

 .  

8. ρ satisfies the Lebesgue property, i.e. for any uniformly bounded sequence (Xn)n≥1 of random variables, converging in 

probability to X, ( ) lim ( )n
n

X X 


 .  

Furthermore, the mapping ρ  → Qρ from the set of coherent risk measures with the Fatou property into the set of all non-empty 

closed convex subsets of M is one-to-one and onto.  
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Remark 3. Note that coherent risk measures defined on L p for 1 ≤ p < ∞ are easily characterized using the Hahn–Banach 

Representation Theorem. The point in the above result is that in (1.1) the infimum is taken over a subset of M, i.e. σ-additive 

probability measures, and not over a set of finitely additive positive measures with total mass 1 in the dual of L∞.  

3. Dilatation monotone and comonotonic additive risk measures  

Definition 4. A coherent risk measure ρ is called dilatation monotone if for all X  L∞ and any σ-algebra 

, ( ) ( [ | ])F F X E X F    holds.  

 This definition captures the economic intuition that averaging out a risky return should never increase the involved risk, see 

[9].  

Definition 5. (See [8, 11, 16]) A pair of random variables X, Y  L0 is said to be comonotone if  

( ( ) ( ))( ( ) ( ) .X X Y Y Q        
  A functional (in particular a risk measure) F : L∞ → R is called comonotonic additive, if F(X + Y ) = F(X) + F(Y) holds for all 

comonotonic pairs X, Y  L∞. 

The assumption of comonotonic additivity for risk measure appears to be economically natural since it implies that we cannot 

diversify risk by combining comonotone claims.  

We can characterize the coherent dilatation monotone risk measures with the Fatou property in terms of the sets Qρ and Aρ from 

Theorem 2 as follows:  

Theorem 6. Let ρ be a coherent risk measure, satisfying the Fatou property. The following properties are equivalent.  

1. ρ is dilatation monotone.  

2. X  Aρ implies [ | ]E X F A  for all σ-algebras F F .  

3. For all Q  Qρ and any σ-algebra F F there exists Q  Qρ such that | .
dQ

E F
dP

 
 
 

 

Proof: Assume ρ to be dilatation monotone. For X  Aρ and a σ-algebra F F  we have ( [ | ]) ( ) 0,E X F X  
 
hence 

[ | ] ,E X F A  i.e. condition (2) holds.  

Let property 2 hold. For all X  L∞ we have ρ(X + ρ(X)) = 0, hence X + ρ(X)  Aρ. Therefore, by assumption 

[ ( ) | ]E X X F A   and thus ( [ | ]) ( ).E X F X    

To check that property 2 implies 3 set  

 0 1 | : [ ] 0 .A Y L X A E XY     
 

Note that [ | ] [ | ] 0E E Y F X E YE X F         by assumption. Hence Y  A◦
ρ implies 0| .E Y F A

    By the bipolar theorem, 

see Delbaen ([4], Chapter 4.1), we have   0 1| | [ ] 1 ,
dQ

Q Q A Y L E Y
dP

 

 
    

 
 and property 3 follows.  

Similarly, property 3 implies 2 since 
0 | , 0 .

dQ
A Q Q

dP
  

 
   
 

    

Coherent comonotonic additive risk measures with the Fatou property can be characterized in terms of the set Qρ as follows:  

Theorem 7. If ρ is a coherent risk measure with the Fatou property, then the following properties are equivalent:  

1. ρ is comonotonic additive.  

2. For any two events B1  B2   there exists Q*  Qρ such that Q*(Bi) = supQQρ Q(Bi) for i = 1, 2.  

3. For any finite family of events (Bi)iI such that either Bi1  Bi2 or Bi2  Bi1 for all  i1,i2  I there exists Q*  Qρ such that Q*(Bi) 

= supQQρ Q(Bi) for all i  I.  

Moreover, if ρ satisfies the Lebesgue property, then the family of events (Bi)iI in property 3 can be infinite. 

We shall prove this theorem using Theorem 11 from Delbaen [4], arguments of Lemma 2 from Delbaen [4] and some results 

about the Choquet integrals.  

Proof. Let us prove that property 2 implies 1. That  

(1 ) (1 ) (1 ) (1 )G H G H G H       for all G, H  F.   

Set 1 \ ( )B G H   and 2 \ ( )B G H  . Since B1  B2 by assumption there exists Q*  Qρ such that 
* ( ) sup ( )i Q Q iQ B Q B



for i = 1, 2. Hence  
* *( ) inf ( ) and ( ) inf ( ).

Q Q Q Q
Q G H Q G H Q G H Q G H

  
   

So using (1) we get  
* *

* *

(1 ) (1 ) ( ) ( )

( ) ( ) (1 ) (1 ).

G H G H

G H

Q G H Q G H

Q G Q H

 

 

   

    
  

So we proved that properties 2 implies 1. Clearly property 3 implies 2, so it remains to check that 1 implies 3.  

Let ρ be comonotonic additive. Clearly, the indicator functions of Bi, i  I are comonotone, so we have  

|1 ( 1 ).i i

i I i I

B B 
 

 
   
 
   

By Theorem 2 and Theorem 11 from Delbaen [4] there exists Q*  Qρ such that   *1 1
i iB BQi I i I

E
 

        and thus 

  *1 1 .
i iB BQi I i I

E
 

       But *( 1 ) inf [ 1 ] [1 ]
i i iB Q Q Q B BQ

E E


       for each i  I and hence *

*( 1 ) [1 ] ( )
i iB B iQ

E Q B   

for each i  I. So 
* ( ) ( 1 ) sup ( )

ii B Q Q iQ B Q B


    for all i ∈ I.  
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Now assume that ρ satisfies the Lebesgue property and I may be infinite. For a finite subset J  I set  

*( ) : ( ) sup ( ) .i i i
Q Q

Q J Q Q Q B Q B J


 


 
     
 

 

We have proved that the set Qρ(J) is non-empty whenever J is a finite subset of I. Clearly Qρ(J) is also a (weakly) compact subset 

of Qρ. Thus since by Theorem 2 the set Qρ is compact and all finite intersections of the sets Qρ(Jα) are non-empty, whenever Jα are 

finite, it follows that there exists a probability measure  
*

all finite subsets  of 

( ) .
J I

Q Q J    

Clearly Q* satisfies 
* ( ) sup ( )i Q Q iQ B Q B

 for all i  I.   
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